
9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 1/17

Stock Predictions with Prophet 💰

Now that you have seen how prophet helps us do predictions, it's your turn to do stock
predictions.

In this challenge, we're looking at the stock closing prices of Apple (AAPL) starting from 2018-2021.
We're using data from a CSV file, so you can plug-in any stock data you want in the future. The data
was gathered from IEX.

Let's get started 💹

Setup ⚙️

Before working on the code, let's install prophet in this notebook.

The installation will take a few minutes so feel free to start the installation first, so you're ready to go
when the exercises start 🚀

ℹ️ Following the image below, click on the "Environment" tab (box icon) and in the "Explore" tab
search for prophet - install the first package on the list and then click on the "Restart Kernel" button
when it appears on the bottom right.

https://iexcloud.io/docs/api/

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 2/17

S t i d ' d t di t ith P th !

First, we import the necessary Python libraries. pandas for dealing with CSV files and data, and
prophet for our predictions:

import pandas as pd
import numpy as np
from prophet import Prophet

The rest of the steps are essentially the same as with the car sales forecasting we just did 🚗

So make sure to check back in the Monthly Car Sales with Prophet notebook or the lecture slides
on Learn if you forgot anything. We hide the solutions for this one, because we know you got this 💪

Your turn! 🚀

Create a DataFrame called df by reading the aapl.csv file, which is in the data folder

your code here
df = pd.read_csv('https://wagon-public-datasets.s3.amazonaws.com/sprints/prophet-aapl-stoc
df

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 3/17

close date

0 53.060 2018-10-29

1 53.325 2018-10-30

2 54.715 2018-10-31

3 55.555 2018-11-01

4 51.870 2018-11-02

...

681 148.480 2021-07-15

682 146.390 2021-07-16

683 142.450 2021-07-19

684 146.150 2021-07-20

685 145.400 2021-07-21

686 rows × 2 columns

Solution

Check how many rows and columns do you have. Also check what are the data types of your
columns

number of rows and columns
df.shape

(686, 2)

data types
df.dtypes

close float64
date object
dtype: object

Solution

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 4/17

Preparing data for prophet

In the livecode we saw that prophet asks us to format the data in a certain way to make it work.

Change the columns to y and ds , in this order. y is our stock price (our target to predict), ds is
the date.

your code here
df.columns = ['y','ds']

Solution

Convert the ds column to a datetime data type. Remember the pandas.to_datetime() function

your code here
df['ds'] = pd.to_datetime(df['ds'])
df.dtypes

y float64
ds datetime64[ns]
dtype: object

Solution

Visualize the data that we have. We don't want to start making predictions before looking at the past
:)

your code here
df.plot(x='ds', y='y', figsize=(15,6), label ='AAPL')

https://facebook.github.io/prophet/docs/quick_start.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 5/17

<Axes: xlabel='ds'>

Download

Solution

Finally let's create a new model and fit (train) it on our DataFrame 🤖

your code here
model = Prophet()
model.fit(df)

<prophet.forecaster.Prophet at 0x7f223190f7c0>

00:06:54 - cmdstanpy - INFO - Chain [1] start processing
00:06:55 - cmdstanpy - INFO - Chain [1] done processing

Solution

In-sample prediction

Let's start with looking at existing data and see how well the model learned the patterns.

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 6/17

Make a sample with the last 90 days of stock prices from our DataFrame df

your code here
sample = df[-90:]
sample

y ds

596 123.99 2021-03-15

597 125.57 2021-03-16

598 124.76 2021-03-17

599 120.53 2021-03-18

600 119.99 2021-03-19

...

681 148.48 2021-07-15

682 146.39 2021-07-16

683 142.45 2021-07-19

684 146.15 2021-07-20

685 145.40 2021-07-21

90 rows × 2 columns

Solution

Create a forecast by using the .predict() method of our model

your code here
forecast = model.predict(sample)
forecast

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 7/17

ds trend yhat_lower yhat_upper trend_lower trend_upper additive_terms additive_terms_lower ad

0 2021-
03-15 130.233734 118.899592 127.422310 130.233734 130.233734 -7.198091 -7.198091 -7

1 2021-
03-16 130.329189 118.816482 126.934196 130.329189 130.329189 -7.377212 -7.377212 -7

2 2021-
03-17 130.424644 118.448904 126.856114 130.424644 130.424644 -7.538293 -7.538293 -7

3 2021-
03-18 130.520100 118.628171 126.559920 130.520100 130.520100 -7.931815 -7.931815 -7

4 2021-
03-19 130.615555 118.170717 126.437750 130.615555 130.615555 -8.340656 -8.340656 -8

...

85 2021-
07-15 141.879272 137.307371 145.434458 141.879272 141.879272 -0.547747 -0.547747 -0

86 2021-
07-16 141.974727 137.004513 145.123892 141.974727 141.974727 -0.741454 -0.741454 -0

87 2021-
07-19 142.261093 137.607554 145.699860 142.261093 142.261093 -0.782276 -0.782276 -0

88 2021-
07-20 142.356548 137.327538 145.910529 142.356548 142.356548 -0.727223 -0.727223 -0

89 2021-
07-21 142.452003 137.780307 145.690977 142.452003 142.452003 -0.674497 -0.674497 -0

90 rows × 19 columns

Solution

We can look inside the forecast variable, but it's not easy to read. Let's visualize our forecast
instead.

your code here
model.plot(forecast);

Download

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 8/17

Solution

[Bonus 🏋️‍♂️] Let's also plot a line of the real historic data between the dots. Don't hesitate to check
how we did that with the car sales challenge.

your code here
ax = model.plot(forecast).gca()
df.plot(ax=ax,x='ds', y='y', label = 'actual', color = 'g')

<Axes: xlabel='ds', ylabel='y'>

Download

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 9/17

Solution

Finally, let's count the difference between the y column in our sample and the yhat column in
our forecast

your code here
difference = forecast['yhat'].values - sample['y'].values
np.absolute(difference).mean()

2.7489457163612547

Solution

We can see our predictions are very close - on average just about 25 cents off! Now let's move on to
future predictions 🔮

Out-of-sample prediction

First, let's create a future DataFrame which will contain dates for the next 180 days.

In the previous challenge we had to set our freq uency to MS , because our car sales were monthly.
The only difference here, is that we need to change the freq option to D , for 'days'.

your code here
future = model.make_future_dataframe(freq='D', periods=90)
future

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 10/17

ds

0 2018-10-29

1 2018-10-30

2 2018-10-31

3 2018-11-01

4 2018-11-02

... ...

771 2021-10-15

772 2021-10-16

773 2021-10-17

774 2021-10-18

775 2021-10-19

776 rows × 1 columns

Solution

[But wait ❗] The stock exchange is closed on the weekends, so if we want to be more accurate, we
should also remove weekends from our future dates. For that we need to do some filtering using
the pandas.datetime.dayofweek function. Simply run the cell below, to update your future
DataFrame 😉

future = future[future['ds'].dt.dayofweek < 5]
future.tail(10) # last 10 rows, note the weekend gaps

https://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.dayofweek.html

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 11/17

ds

762 2021-10-06

763 2021-10-07

764 2021-10-08

767 2021-10-11

768 2021-10-12

769 2021-10-13

770 2021-10-14

771 2021-10-15

774 2021-10-18

775 2021-10-19

Time to make a future_forecast using the .predict() method of our model

Your code here
future_forecast= model.predict(future)
future_forecast.tail()

ds trend yhat_lower yhat_upper trend_lower trend_upper additive_terms additive_terms_lower a

745 2021-
10-13 150.470243 144.242729 160.362817 143.559098 157.214573 1.921781 1.921781 1

746 2021-
10-14 150.565698 143.942407 160.739249 143.482552 157.497882 1.792610 1.792610 1

747 2021-
10-15 150.661153 143.908052 160.792199 143.344350 157.661192 1.598304 1.598304 1

748 2021-
10-18 150.947519 143.989820 160.899913 143.438201 158.141553 1.491048 1.491048 1

749 2021-
10-19 151.042974 143.619372 161.391017 143.354299 158.592615 1.505418 1.505418 1

Solution

Again, looking at this huge DataFrame is not ideal - let's visualize our predictions

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 12/17

Your code here
model.plot(future_forecast);

Download

Solution

Interesting results! We can clearly see there's a point where our model starts "losing confidence". Let's
explore our findings further.

Exploring our Prediction

Let's start by looking at the different components of our time series prediction - such as seasonality
and trend. Don't hesitate to check the car sales notebook for the answers!

Your code here
model.plot_components(future_forecast);

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 13/17

Download

Solution

Any day traders here? 🙋‍♂️ 🙋‍♀️ Because our data is daily, you can also see the weekday trends.

[Bonus 🏋️‍♂️] Shall we make our graph interactive? Remember the .plot_plotly() function we used
in our car sales livecode.

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 14/17

Your code here
from prophet.plot import plot_plotly

plot_plotly(model,future_forecast)

Solution

Evaluating our Model

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 15/17

Let's use the Diagnostics library from prophet to validate our model using cross_validation . Run
the cell below to import the library first:

from prophet.diagnostics import cross_validation

Now create a df_cv DataFrame that is the result of running cross_validation on our model, with
a horizon of 180, 90 or 60 days - your choice!

The less days you choose, the longer it will take, and the more learning the model will do, because it
will chop up your data into those blocks.

Your code here
df_cv = cross_validation(model,horizon ='60 days')

00:25:58 - cmdstanpy - INFO - Chain [1] start processing
00:25:58 - cmdstanpy - INFO - Chain [1] done processing
00:25:58 - cmdstanpy - INFO - Chain [1] start processing
00:25:59 - cmdstanpy - INFO - Chain [1] done processing
00:25:59 - cmdstanpy - ERROR - Chain [1] error: error during processing Operation not p
Optimization terminated abnormally. Falling back to Newton.
00:25:59 - cmdstanpy - INFO - Chain [1] start processing
00:26:01 - cmdstanpy - INFO - Chain [1] done processing
00:26:01 - cmdstanpy - INFO - Chain [1] start processing
00:26:01 - cmdstanpy - INFO - Chain [1] done processing
00:26:01 - cmdstanpy - INFO - Chain [1] start processing
00:26:01 - cmdstanpy - INFO - Chain [1] done processing
00:26:01 - cmdstanpy - INFO - Chain [1] start processing
00:26:02 - cmdstanpy - INFO - Chain [1] done processing
00:26:02 - cmdstanpy - INFO - Chain [1] start processing
00:26:02 - cmdstanpy - INFO - Chain [1] done processing
00:26:02 - cmdstanpy - INFO - Chain [1] start processing
00:26:02 - cmdstanpy - INFO - Chain [1] done processing
00:26:02 - cmdstanpy - INFO - Chain [1] start processing
00:26:02 - cmdstanpy - INFO - Chain [1] done processing

Solution

Finally, let's visualize the errors (differences) that between our model prediction and the seen
reality. We will use the mae (Mean Absolute Error) as the metric, same as with our car sales

https://facebook.github.io/prophet/docs/diagnostics.html

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 16/17

predictions.

from prophet.plot import plot_cross_validation_metric
fig = plot_cross_validation_metric(df_cv, metric='mae')

Download

Interpretation

model.plot(future_forecast);

Download

9/12/23, 6:21 PM Clone of Stock Predictions with Prophet

file:///C:/Users/trini/Downloads/Clone of Stock Predictions with Prophet.html 17/17

With the information you have, you can already start making decisions. The rest is up to how risk
averse are you and what's your goal!

We can see from the prediction plot that we have a point after which the model quickly starts
to lose confidence.
We can also see the same from the errors - as we try to predict further into the future, our
accuracy goes down.
But we can see that typically about up to 30-50 days into the future we are getting good results
for 1 hour of work! 💪

Congrats! You now have Python tools for your
own predictions! 🔥

